Search results for "Clustering algorithm"
showing 10 items of 34 documents
A novel clustering-based algorithm for solving spatially-constrained robotic task sequencing problems
2021
The robotic task sequencing problem (RTSP) appears in various forms across many industrial applications and consists of developing an optimal sequence of motions to visit a set of target points defined in a task space. Developing solutions to problems involving complex spatial constraints remains challenging due to the existence of multiple inverse kinematic solutions and the requirements for collision avoidance. So far existing studies have been limited to relaxed RTSPs involving a small number of target points and relatively uncluttered environments. When extending existing methods to problems involving greater spatial constraints and large sets of target points, they either require subst…
Fast dendrogram-based OTU clustering using sequence embedding
2014
Biodiversity assessment is an important step in a metagenomic processing pipeline. The biodiversity of a microbial metagenome is often estimated by grouping its 16S rRNA reads into operational taxonomic units or OTUs. These metagenomic datasets are typically large and hence require effective yet accurate computational methods for processing.In this paper, we introduce a new hierarchical clustering method called CRiSPy-Embed which aims to produce high-quality clustering results at a low computational cost. We tackle two computational issues of the current OTU hierarchical clustering approach: (1) the compute-intensive sequence alignment operation for building the distance matrix and (2) the …
Efficient unsupervised clustering for spatial bird population analysis along the Loire river
2015
International audience; This paper focuses on application and comparison of Non Linear Dimensionality Reduction (NLDR) methods on natural high dimensional bird communities dataset along the Loire River (France). In this context, biologists usually use the well-known PCA in order to explain the upstream-downstream gradient.Unfortunately this method was unsuccessful on this kind of nonlinear dataset.The goal of this paper is to compare recent NLDR methods coupled with different data transformations in order to find out the best approach. Results show that Multiscale Jensen-Shannon Embedding (Ms JSE) outperform all over methods in this context.
SMART: Unique splitting-while-merging framework for gene clustering
2014
© 2014 Fa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Successful clustering algorithms are highly dependent on parameter settings. The clustering performance degrades significantly unless parameters are properly set, and yet, it is difficult to set these parameters a priori. To address this issue, in this paper, we propose a unique splitting-while-merging clustering framework, named "splitting merging awareness tactics" (SMART), which does not require any a priori knowledge of either the number …
Computation Cluster Validation in the Big Data Era
2017
Data-driven class discovery, i.e., the inference of cluster structure in a dataset, is a fundamental task in Data Analysis, in particular for the Life Sciences. We provide a tutorial on the most common approaches used for that task, focusing on methodologies for the prediction of the number of clusters in a dataset. Although the methods that we present are general in terms of the data for which they can be used, we offer a case study relevant for Microarray Data Analysis.
GenClust: A genetic algorithm for clustering gene expression data
2005
Abstract Background Clustering is a key step in the analysis of gene expression data, and in fact, many classical clustering algorithms are used, or more innovative ones have been designed and validated for the task. Despite the widespread use of artificial intelligence techniques in bioinformatics and, more generally, data analysis, there are very few clustering algorithms based on the genetic paradigm, yet that paradigm has great potential in finding good heuristic solutions to a difficult optimization problem such as clustering. Results GenClust is a new genetic algorithm for clustering gene expression data. It has two key features: (a) a novel coding of the search space that is simple, …
Data Analysis and Bioinformatics
2007
Data analysis methods and techniques are revisited in the case of biological data sets. Particular emphasis is given to clustering and mining issues. Clustering is still a subject of active research in several fields such as statistics, pattern recognition, and machine learning. Data mining adds to clustering the complications of very large data-sets with many attributes of different types. And this is a typical situation in biology. Some cases studies are also described.
Structural clustering of millions of molecular graphs
2014
We propose an algorithm for clustering very large molecular graph databases according to scaffolds (i.e., large structural overlaps) that are common between cluster members. Our approach first partitions the original dataset into several smaller datasets using a greedy clustering approach named APreClus based on dynamic seed clustering. APreClus is an online and instance incremental clustering algorithm delaying the final cluster assignment of an instance until one of the so-called pending clusters the instance belongs to has reached significant size and is converted to a fixed cluster. Once a cluster is fixed, APreClus recalculates the cluster centers, which are used as representatives for…
The Three Steps of Clustering In The Post-Genomic Era
2013
This chapter descibes the basic algorithmic components that are involved in clustering, with particular attention to classification of microarray data.
Incrementally Assessing Cluster Tendencies with a~Maximum Variance Cluster Algorithm
2003
A straightforward and efficient way to discover clustering tendencies in data using a recently proposed Maximum Variance Clustering algorithm is proposed. The approach shares the benefits of the plain clustering algorithm with regard to other approaches for clustering. Experiments using both synthetic and real data have been performed in order to evaluate the differences between the proposed methodology and the plain use of the Maximum Variance algorithm. According to the results obtained, the proposal constitutes an efficient and accurate alternative.